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ON THE EXISTENCE OF ADDITIONAL INTEGRALS OF THE EQUATIONS 
OF MOTION OF A MAGNETIZABLE SOLID IN AN IDEAL FLUID, IN THE PRESENCE 

OF A MAGNETIC FIEUl* 

A.A. BUROV and G.I. SUBKHANKULOV 

The equations Of motion of a magnetic solid in an ideal fluid and in a 
homogeneous magnetic field are derived, their Hamiltonian structure are 
studied and four first integrals are determined. The four-parameter 
family of the cases of Liouville integrability is found, as well as some 
cases of the existence of particular integrals. 

1. Let US solid move in an unbounded volume of an ideal fluid which is at rest at in- 
finity. We introduce two orthogonal coordinate system: a moving system Oxyz rigidly bound 
to the solid, and a fixed system. We denote by p = (gl,gO, Qs) and u = (ul,ua,ua) the vectors 
of instantaneous and translational velocity of the body. Here and henceforth the vector 
components are taken in the moving coordinate system. The kinetic energy of the "body c fluid" 
system is determined by the positive definite quadratic form 

E(Q,u)= l/za,jQQj + fi,,Qiuj _t 1/s yijUiUj 

(the repeated indices everywhere denote summation from 1 to 3). 
We introduce the vectors M = (Ml, MI, MS) and p = (p', pa, pa), M' = aim-t, pi = mad, which 

can be regarded as the kinetic moment of the system about the point 0 and the total momentum. 
We denote by 

Ho (M, p) = 1/Z ai jM’Mj + b,j M’pj + 112 cijpipj 

the quadratic form dual to E(8.u) relative to the tegendre transformation. Then 

ui = m,iaf+, 0’ = aH,laM’ (i = 1, 2, 3) (1.1) 

The equationsof the change of momentum and kinetic moment of the "body + fluid" system 
have the form /l/ 

p’- p x Q -F_ F,, W=MxQ+pxu+-M, (1.2) 

where E, and Me are the additional non-hydrodynamic force and moment of forces acting on the 
body. The derivatives M*and p-determine the variation of the vectors M and p with respect 
to the moving coordinate system. 

Let the body move in a homogeneous magnetic field h. The magnetic field strength h* and 
induction b*distorted by the presence of the body satisfy, in the quasistatic approximation, 
satisfy the following equations and boundary conditions: 

div b* = 0, rot h* = 0 (1.3) 

lb,,+] = 0, [h,*l = 0, h* + h as x2 + y2 + 22 + m 

where b.* and h,* are the normal component of the induction and tangential component of the 
magnetic field strength at the body surface. The square brackets denote the difference in the 
value of the quantity enclosed in them, on each side of the body surface. 

If the body is linearly magnetizable, then b* = plh* where pris the magnetic permeability 

of the material of the body. If the body is a permanent magnet, then b* = b* i- 41~0 where 8 

is the constant magnetic dipole moment of the body. Let the relation connecting the induction 

and field strength within the body, have the form 

b* = c”,b* + 4x0 (1.41 

We shall assume that the'fluid is linearly magnetizable and its magnetic permeability 
uLz is constant. Let us denote by @ the free energy of the "body + fluid" system in the 
magnetic field. As we know (/2/, p.17O.m is the total dipole moment of the body) 

IS@=-(m,6h), m=-&S(b*-tt2h*)dV (1.5) 

The variation @ is taken with the magnetic field SOUrCeS Constant. The angle brackets 

denote the scalar product of Vectors. 
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Since problem (1.31, (1.4) is linear, it follows that m depends linearly on h, i.e. 

m= - (Dh + J) (1.6) 

The matrix elements of the operator D and the components of the vector J are determined 
in the &gz coordinate system by the geometry of the body am2 by the values of ~1, pi, 8 only. 
Integrating the relation (1.5) taking (1.6) into account, we find that @ = (Dh, h>/2 +(J, h) 
apart from an unimportant constant. 

varying Q, on the possible translations of the body, we obtain expressions for the force 
and moment of the force acting on the body from the side of the magnetic field (see e-g. /2/I 

F ,=O, M,=m x h=-&D/ah x h (1.7) 

Introducing the notation 

El (M, pt h) = Ha (M, p) + Q,(h) = <-W M)/2 + W& p> + <CP, P> + @h, hY2 + <Js h) (~.8) 

we write (l-2), taking (1.1) and (1.7) into account, in the form 

M’=M x aH@Rf+p x &‘H@p+h x aR@h CL.91 

3’ = p x tSfJ?M 

The equation 

K = h x aHIbM (i.10) 

describing the change in the value of the vector h in the moving coordinate system, makes it 
possible to obtain a closed system of equations in M, p, h. Equations (1.9) and (1.10) 
together with the given function (1.8) form the subject of subsequent investigation. 

The set of equations (1.91, (1.10) is also encountered in other problems of mechanics. 
Two examples of such problems follow. 

lo. Let a pofarizable, non-conducting solid move in an inbounded volume of an ideal 
incompressible fluid in the presence of a homogeneous magnetic field. In this case the 
equations are derived with the same accuracy as the equations of motion of a magnetic solid 
in a homogeneous magnetic field obtained above. 

2O. Let us consider the motion ofa satellite in a circular orbit, about its centre of 
mass /3/. Let Ozyz be an orthogonal coordinate system rigidly bound to the satellite, with 
origin at the centre of mass, A be the inertial tensor of the.satellite relative to the point 
0.4 the angular velocity of motion of the point 0 along the circular orbit, o the absolute 
angularvelocityofthe satelliteand M= Ar thekineticmmaentvector, We introduce the function 

H= fZ_'M,A'M,--ootM,p,+~~*tb,Ah) 

Here h is the unit vector pointing from the centre of attraction towards the point 0, 
and P is the unit vector normal to the orbital plane. 

Then the motion of the satellite in the 0~~s coordinate system will be described by 
equations (1.9), (l.lO), with the function H of the type shown above. 

2. Let us introduce into P(RD) the Poisson bracket, i.e. a bilinear skew symmetric 
operation {., -1, satisfying the Leibnitz condition, assuming that 

{MI, MjI = -eilbMk, (Wf, IJjI = -eijkPk (2.1) 

{MI, hjl z -@lj&*v {Pi* Pjl = {Pit hjf = (4% 51 = O 

The Eqs.fl.9),il.l0) can be written in the form 

M' = {M, H}, p’ - {p, R), h’= (h, H) (2.2) 

System (2.2) represents a special case of Euler's equations in Lie algebra G /4/ cons$.st- 
ing of the semi-direct sum of the Lie algebra of group Es of motions of i&ree-&mensional 
Euclidean space, and Lie algebra of the group T, of translations of the three-dimensional 
space. 

The system (1.91, (l.lO)has four first integrals fOranyvalueSOfitS Barameters, namely the 
energy integral I, = H and the integrals 

I 2 = (p. P>- Ia - <h, h>, Ia = <p, h> (2.3) 

The functions I,, I,, 1, commute with any smooth functions on R@(&f, p,h), i.e. the 
Poisson bracket (2.1) is degenerate. Let us inspect the construction of the Poisson bracket 
and the function X(iW, p, h) on the non-singular level of the integrals 

I $!a(l = (1, = CI > 0, I, = cg > 0, I, = C,I 

Assertion 1. A global variable substitution exists on I,, transforming the Poisson 
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bracket contracted on I,, to its canonical form. 

Proof. We introduce the variables Pi, Qi(i=l,2,3) on I,,, as follows: 

P 1 = Mg, P1 = (M, M:"*, PJ = (M, p)/(p, p)“: 

The meaning of the variables Qi (i = 1,2,3) is obvious from the figure. 
Here Ozyz is a moving orthogonal coordinate system rigidly 

z P Y bound to the body, x1 and Z,are planes passing through the point 0 

M L.? 

* 

and perpendicular to the vectors p and M respectively, 1, is the 

;j 
orthogonal projection of the straight line passing along the vector 

h h in the plane Z,; 1, is the line of intersection of the planes 

\I g, 0*4 
3 z, and 2,; 1, is the line of intersection of the planes 2, and 

oxy. The explicit expressions for the angles Qi(i = 1,2,3) written 

4 rr in terms of M, p, h are bulky, and are therefore not given here. 
Direct computation of the Poisson bracket taking (2.1) into 

12 account, yie Ids 
(Pi, 0)) = 6tjv (Pi, PiI = tQi_ Qj) = 0 

i.e. the variables Pi, Q1(i = 1,2,3) are canonical. The system of equations (2.2) on I,,, 
has, in the new variables, the form 

Qi' = aH*ldPi, Pi’ = - aH*IaQi 
where H*is the contraction of the function Han I,,,. 

The variables Pi, Qi (i = 1, 2, 3) are analogous to the Andoyer variables used in investigat- 
ing the dynamics of a heavy rigid body with a fixed point /5/. 

3. The non-singular symplectic manifold I,,, is six-dimensional, therefore the full 
integrability of the equations of motion (2.2) requires that, in addition to the energyintegral, 
I,=H, another two first integrals exist commuting with each other. 

Assertion 2. Let the function 

H (M, p, h)=+(AM, M)+ + (Cpv p)+ +<(Dh. h> 

be such, that the matrices A,C,D are diagonal 

A = diag (a~, a,, a,), C = diag (e,, c2, c,), D = diag (d,, 4, d,) 

and 

ci = x,n,a,a,ai -I + Yl, di = nza,a,a,ai-' -I- V* (3.1) 

where x~, xt, vI, v, are arbitrary constants. Then system (2.2) has two additional first integrals 
commuting with each other 

I$ = ($1, M) - ai (X$i* + X&i') (3.2) 

Is=x~ (My p)' +xz(M'~ h)' + xlXaai(p X h),* 

and I, = H, I,, i, are functionally independent on IzS1. 

Proof. Let us compute the derivatives I,' and I@' using system (X.2), with the function 
H of the type described above 

I; = ZM,M,’ - 24 &pipt ?- x,h*ht’) = 
2eijk bfi(hfja&k f PjCkPk f hjd&h) - (21 (x#IPj f Qihj) @d’fk1 

Reducing the similar terms we obtain 

I,' = 2eijkMipjpk (ck f %,a,ak) + &ijkMihjhk (dk + %aaiak) 

BY virtue of (3.1) the right-hand side of the last relation is zero. Similarly, 

1,'=22x1 (Me p)$ <M, p> + 2x2 <M, h> -$ (M, h) + 2xlxzais~si' (3.3) 

where s = h x p. We have the relations 

$<M' P> = eijkpihjdkhk= - dkskhk 

-$ <M, h) =eij&JjC,JJ~ =CkSkPk 

aisiq’ = aisie,,,sjakMk = ~~s~(M X S)j 

Since M x s = M x (h x p) = h(M, p> - p(M, h), it follows that aisis,' = a+@&-'sk (hk (11, 

P> - pk W, h>). Then, reducing the similar terms in (3.3) we obtain 

I,' = 2 (M, p> Skhk (- %,dk + %l%za&a3ak-') i 2 (IM, h>s,p, (%,Ck - %IX~alU$Z$Zk-l) 
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The right-hand side of this expression is zero, by virtue of (3.1) and the relations 

(s, p) = (s, h) = 0. 
Thus we have a four-parameter family of Liouville-integrable systems Of the form (1.9) I 

(1.10). At the particular levels of 1,~ the integrals I, and 1~ are transformed, respect- 
ively, intoaKl&schintegral and into the square of the area integral of the KirChhOff 
equations /6/. 

If a,=f$, then the additional integrals can be taken in the form 

II-MS 

II = x1 <M, P>' + xz <M, h>g - x,x,a~ (P& - p&J2 
In the case of system (2.2) with Hamiltonian H (M, p, h)= I‘; the functions Z,,Z,,Z,,Z~ 

and 

also form a complete set of independent coxunuting integrals. 
We note that when the matrices A,B,C,D are diagonal and 

a1 = aj, b, = b,, cl = c,, dl = 4, J, = J, 
then I, = M, is the integral of system (2.2) with H of the form (1.8). 

When the function H of the form (1.8) is chosen in a particular way, system (2.2) admits 
of a particular integral I, i.e. rIc,,, = 0 if Z = 0. 

Assertion 3. Let the function H (M, p,h) of the form (1.8) satisfy the conditions 

A = diag (a,, a,, a,), a, C 4, < aa, B = 0, cl8 = ct8 = 0 

lG=z (co - cm) T V% -%Ga = 0 
vr ad13 f v= (cm - cn) = 0 

and one of the following conditions: 

1) J = 0, 4* = 4, i= 0 

m @,a - 4,) r c&s = 0 -- 
7/h - wla f VZ (es, - 4 = 0 

2)D = 0, Jt = 0 

l’zJ* f l’=Jx = 0 

Then I= M,fKfM,fa, -a, is a particular integral of system (2.2). 
The particular integral obtained is a generalization of the particular integral of the 

KirChhOff equations /7/ and of the particular Hess-Appel'rot integral in the dynamics of a 
heavy rigid body with a fixed point. 

1. 
2. 

3. 

4. 
5. 
6. 
7. 

The authors thank A.N. Golubyatnikov and V.V. Kozlov for their interest. 

REFERENCES 

SEDCV L.I., Mechanics bf Continua, Vo.2, Moscow, Nauka, 1976. 
LANDAU L.D. and LIFSHITZ E.M., Theoretical Physics. Vo1.8. Electrodynamics of Continua. 

Moscow, Nauka, 1982. 
BELETSKII V.V., Motion of a Satellite Relative to the Centre of Mass in a Gravitational 
Field. Moscow, Izd-vo MGU, 1975. 

APNOL'D V.I., Mathematical Methods of Classical Mechanics. Moscow, Nauka, 1974. 
ARKHANGEL'SKII YU.A., AnalyticalDynamicsof a Solid. Moscow, Nauka, 1977. 
STEKLOV V.A., On the Motion of a Solid in a Liquid. Khar'kov, 1893. 
KOZMV V.V. and CNISHCHENKO D.A.,' Non-integrability of the Kirchhoff equations. Dokl. Akad. 
Nauk SSSR, Vo1.266, N0.6, 1982. 

Translated by L.K. 


